#### ПРОТОКОЛ № 21260/2024

# проведения совместных испытаний программного обеспечения «AlphaBI» версии 5.3.0 и операционной системы специального назначения «Astra Linux Special Edition» РУСБ.10015-01 (очередное обновление 1.8)

РУ СБ.10015-01 (очередное ооновление 1.0)

21.05.2024

#### 1 Предмет испытаний

г. Санкт-Петербург

- 1.1 В настоящем протоколе зафиксирован факт проведения в период с 17.04.2024 по 17.05.2024 совместных испытаний программного обеспечения «AlphaBI» версии 5.3.0 (далее ПО), разработанного АО «БАРС Груп», и операционной системы специального назначения «Astra Linux Special Edition» РУСБ.10015-01 (очередное обновление 1.8) (далее Astra Linux SE 1.8.0), разработанной ООО «РусБИТех-Астра».
  - 2 Объект испытаний
- 2.1 Перечень компонентов, эксплуатировавшихся в ходе проведения данных испытаний, относящихся к ПО, представлен в Таблице 1.

Таблица 1 – Перечень компонентов, относящихся к ПО

| Описание                                                    | Наименование                                    | MD5                                  | Источник                |
|-------------------------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------------|
| Файл архива, содержащий основные модули ПО                  | Bars.Alpha.Web-linux-<br>x86_64-5.3.0.24324.zip | 886f6f48b94eb3eb401f057c<br>8472d90f | Сторона разработчика ПО |
| Файл архива, содержащий дополнительные модули ПО            | Bars.Alpha.Mondrian-<br>3.14.0.15_13.189.war    | d73623e5e5dd378cd66c233<br>29573c3aa | Сторона разработчика ПО |
| Файл архива, содержащий набор инструкций к инициализации ПО | Bars.Alpha.AdminGuide-<br>5.3.0.24324.zip       | a858327e2f30703297b59ae<br>1b420b8d4 | Сторона разработчика ПО |

#### 3 Ход испытаний

- 3.1 В ходе проведения настоящих испытаний были выполнены проверки корректности функционирования ПО в среде: Astra Linux SE 1.8.0, в объеме, указанном в Приложении 1.
  - 3.2 Перечень используемых репозиториев приведен в Приложении 2.
  - 3.3 Неофициальные репозитории ПО для указанных сред не эксплуатировались.
- 3.4 По информации от разработчика ПО не поддерживает работу с активным режимом ЗПС. Испытания проводились при отключенном режиме ЗПС.

3.5 Проверка корректности функционирования ПО в условиях ненулевого уровня конфиденциальности механизма мандатного разграничения доступа (далее — МРД) указанных сред не проводилась по причине отсутствия поддержки ПО соответствующей функциональности ОС. Информация об отсутствии упомянутой поддержки была заявлена стороной разработчика ПО.

- 4 Результаты испытаний
- 4.1 ПО корректно функционирует в среде: Astra Linux SE 1.8.0.
- 5 Вывод
- 5.1 ПО и операционная система специального назначения «Astra Linux Special Edition» РУСБ.10015-01 (очередное обновление 1.8) совместимы, принимая во внимание информацию, содержащуюся в разделах 3, 4 и Приложении 2.
  - 6 Состав рабочей группы и подписи сторон
  - 6.1 Данный протокол составлен участниками рабочей группы:

Проканюк Д. С. – начальник сектора отдела технологической совместимости департамента развития технологического сотрудничества ДВиС ООО «РусБИТех-Астра»;

Лукашенко И. А. – инженер отдела технологической совместимости департамента развития технологического сотрудничества ДВиС ООО «РусБИТех-Астра».

## Приложение 1 к Протоколу № 21260/2024

### Перечень проверок совместимости ПО и Astra Linux SE 1.8.0

|          |                                                                                      | Результат проверки ПО и Astra Linux SE 1.8.0 |  |
|----------|--------------------------------------------------------------------------------------|----------------------------------------------|--|
| №<br>п/п | Наименование проверки                                                                | с ядром ОС                                   |  |
|          |                                                                                      | 6.1.50-1-generic                             |  |
| 1.       | Установка ПО                                                                         | Успешно                                      |  |
| 2.       | Запуск, остановка выполнения ПО                                                      | Успешно                                      |  |
| 3.       | Эксплуатация минимальной базовой функциональности ПО                                 | Успешно                                      |  |
| 4.       | Функционирование ПО в условиях низкого уровня целостности механизма МКЦ ОС           | Успешно                                      |  |
| 5.       | Функционирование ПО в условиях ненулевого уровня конфиденциальности механизма МРД ОС | Не проводилась                               |  |
| 6.       | Отсутствие нарушений требований подраздела 17.3 «Руководство по КСЗ Ч. 1»            | Успешно                                      |  |
| 7.       | Соответствие объектов ФС ОС дистрибутиву ОС при эксплуатации ПО                      | Успешно                                      |  |
| 8.       | Удаление ПО                                                                          | Успешно                                      |  |
| 9.       | Функционирование ПО в условиях включённого механизма ЗПС ОС                          | Не проводилась                               |  |
| 10.      | Отсутствие нарушений требований подраздела 17.2 «Руководство по КСЗ Ч. 1»            | Успешно                                      |  |

#### Приложение 2 к Протоколу № 21260/2024

#### Инструкция по установке и удалению ПО в средах: Astra Linux SE 1.8.0

#### 1 Используемые репозитории:

#### в Astra Linux SE 1.8.0:

- deb https://dl.astralinux.ru/astra/frozen/1.8\_x86-64/1.8.0/repository-main/ 1.8\_x86-64 main contrib non-free non-free-firmware
- deb https://dl.astralinux.ru/astra/frozen/1.8\_x86-64/1.8.0/repository-devel/ 1.8\_x86-64
   main contrib non-free non-free-firmware
- deb https://dl.astralinux.ru/astra/frozen/1.8\_x86-64/1.8.0/repository-extended/ 1.8\_x86-64 main contrib non-free non-free-firmware
- deb [trusted=yes] http://ftp.de.debian.org/debian bullseye main

#### 2 Установка ПО:

2.1 выполнить системные команды, действия:

sudo apt install ntp postgresql-15 openjdk-17-jre tomcat9 unzip zip nfs-kernel-server nginx haproxy nfs-common libgssapi-krb5-2 libicu72 libssl3 zlib1g libgdiplus mc ssl-cert

#Для установки etcd добавить в sources.list: deb [trusted=yes] http://ftp.de.debian.org/debian bullseye main

sudo apt install etcd

#заменить директивы pool на блок директив (Здесь необходимо корректно указать данные вашего ntp):

sed -i '/pool\ 0/c server 0.ru.pool.ntp.org' /etc/ntp.conf

sed -i '/pool\ 1/c server 1.ru.pool.ntp.org' /etc/ntp.conf

sed -i '/pool\ 2/c server 2.ru.pool.ntp.org' /etc/ntp.conf

sed -i '/pool\ 3/c server 3.ru.pool.ntp.org' /etc/ntp.conf

#Рестарт ntp:

sudo systemctl restart ntp

Страница 4 из 18

```
i /etc/postgresql/15/main/postgresql.conf
sudo sed -e "s/#listen addresses.*/listen addresses = '*'/" -i
/etc/postgresql/15/main/postgresql.conf
#В файле /var/lib/pgsql/11/data/pg_hba.conf
#Метод аутенфикации поменять на "trust" в необходимых строках и произвести
ребут postgresql
sudo systemctl restart postgresql
#Конфигурирование postgresql
#Поменять пароль пользователя postgres
sudo passwd postgres
#В текущем примере из отдельной сесси пользователя postgres:
psql
postgres=# create user Alphabl password '123' createdb;
postgres=# create database AlphaBase owner Alpha;
#Конфигурирование Tomcat
echo 'JAVA OPTS="-Djava.awt.headless=true
-Djava.security.egd=file:/dev/./urandom -Xms512M -Xmx1024M -server -XX:
+UseZGC"' > /etc/default/tomcat9
#Вместо -Xmx1024M следует подобрать значение, соответствующее размеру
доступной памяти сервера.
systemctl restart tomcat9
systemctl status tomcat9
#Развертывание Mondrian
#Отредактировать файл WEB-INF/web.xml архива Bars.Alpha.Mondrian-$
```

{mondrian\_version}.war через mc

```
{ <init-param>
<param-name>DataSourcesConfig</param-name>
<param-value>http://${BalancerHost}:${HaproxyPort}/mondrian/datasources
param-value>
</init-param> }
#Изменить значение параметра AlphaApiKey (прим. данный параметр не
влияет ни на что, может быть вписано любое значение как числовое так и
символьное):
{<init-param>
<param-name>AlphaApiKey</param-name>
<param-value>${MondrianApiKey}</param-value>
</init-param>}
#Отредактировать файл WEB-INF/classes/mondrian.properties
mondrian.util.memoryMonitor.percentage.threshold=99
Переместить файл /tmp/Bars.Alpha.Mondrian-${mondrian version}.war в каталог
приложений Tomcat, изменив его название на mondrian.war
sudo -s
systemctl restart tomcat9
systemctl status tomcat9
#Сервер файлового хранилища
#Конфигурирование
mkdir /var/lib/alphabi_file_storage
chown nobody:nogroup /var/lib/alphabi file storage/
echo "/var/lib/alphabi_file_storage
*(rw,async,all_squash,anonuid=65534,anongid=65534,no_subtree_check)" >>
/etc/exports
exportfs -ra
```

systemctl restart nfs-kernel-server

#Сборка и запуск кластера Etcd

#Отредактировать файл /etc/default/etcd, указав следующие значения:

ETCD NAME="etcd alphabi 1"

ETCD\_LISTEN\_CLIENT\_URLS="http://\${EtcdHost\_1}:\${EtcdPort},http://localhost:\$ {EtcdPort}"

ETCD\_ADVERTISE\_CLIENT\_URLS="http://\${EtcdHost\_1}:\${EtcdPort}"

ETCD\_LISTEN\_PEER\_URLS="http://\${EtcdHost\_1}:\${EtcdPeerPort}"

ETCD\_INITIAL\_ADVERTISE\_PEER\_URLS="http://\${EtcdHost\_1}:\${EtcdPeerPort}"

ETCD\_INITIAL\_CLUSTER="etcd\_alphabi\_1=http://\${EtcdHost\_1}:\${EtcdPeerPort}"

ETCD INITIAL CLUSTER STATE="new"

ETCD INITIAL CLUSTER TOKEN="alphabi"

ETCD AUTO COMPACTION RETENTION="24"

systemctl start etcd

#Конфигурирование последующих узла кластера Etcd (прим. испольщовался только один узел кластера в данном примере)

ETCDCTL\_API=3 etcdctl --endpoints \${EtcdHost\_1}:\${EtcdPort} member add etcd\_alphabi\_\${Current} --peer-urls http://\${EtcdHost\_Current}:\${EtcdPeerPort} #Отредактировать файл /etc/default/etcd , указав следующие значения:

ETCD NAME="etcd alphabi \${Current}"

ETCD\_LISTEN\_CLIENT\_URLS="http://\${EtcdHost\_Current}:\${EtcdPort},http://localhost:\${EtcdPort}"

ETCD\_ADVERTISE\_CLIENT\_URLS="http://\${EtcdHost\_Current}:\${EtcdPort}"

ETCD\_LISTEN\_PEER\_URLS="http://\${EtcdHost\_Current}:\${EtcdPeerPort}"

ETCD\_INITIAL\_ADVERTISE\_PEER\_URLS="http://\${EtcdHost\_Current}:\$

{EtcdPeerPort}"

ETCD\_INITIAL\_CLUSTER\_TOKEN="alphabi"

ETCD INITIAL CLUSTER="\${ETCD INITIAL CLUSTER}"

ETCD INITIAL CLUSTER STATE="existing"

ETCD\_AUTO\_COMPACTION\_RETENTION="24"

#Где \${ETCD\_INITIAL\_CLUSTER} - это значение ETCD\_INITIAL\_CLUSTER, выведенное командой etcdctl member add с прошлого шага; ETCD\_AUTO\_COMPACTION\_RETENTION - параметр, отвечающий за автоматичесое сжатие пространства ключей

systemctl start etcd

ETCDCTL\_API=3 etcdctl user add root:123 #Вместо '123' следует подставить новый пароль

#Создать пользователя в etcd и назначить этому пользователю права на диапазон ключей, выделенный для Alpha Bl

ETCDCTL\_API=3 etcdctl role add \${EtcdUser}

ETCDCTL\_API=3 etcdctl role grant-permission \${EtcdUser} --prefix=true readwrite \$ {EtcdPrefix}

ETCDCTL\_API=3 etcdctl user add \${EtcdUser}:\${EtcdPassword}

ETCDCTL API=3 etcdctl user grant-role \${EtcdUser} \${EtcdUser}

ETCDCTL API=3 etcdctl auth enable

#Установка

rm /etc/nginx/sites-available/default

Создать файл /etc/nginx/sites-available/alphabi.conf со следующим содержимым(прим. параметры \${PathToCertFile} и \${PathToCertKeyFile} - пути до файлов сертификата. В примере использовался самописный сертификат через ssl-cert):

server {

listen 80 default server;

```
location / {
     return 301 https://$host$request_uri;
  }
}
server {
  listen 443 ssl http2;
  ssl certificate ${PathToCertFile};
  ssl_certificate_key ${PathToCertKeyFile};
  ssl_session_timeout 1d;
  ssl_session_cache shared:MozSSL:10m;
  ssl_session_tickets off;
  # modern configuration
  ssl protocols TLSv1.2 TLSv1.3;
  ssl_prefer_server_ciphers off;
  add header Strict-Transport-Security "max-age=63072000" always;
  # OCSP stapling
  ssl_stapling on;
  ssl_stapling_verify on;
  # replace with the IP address of your resolver
  resolver 127.0.0.1;
  location / {
     proxy_pass http://127.0.0.1:${HaproxyPort};
     include proxy_params;
}
```

#Создать или отредактировать файл /etc/nginx/proxy\_params, приведя его содержимое к следующему виду

```
proxy redirect off;
proxy_set_header Host $http_host;
proxy set header X-Real-IP $remote addr;
proxy set header X-Forwarded-For $proxy add x forwarded for;
proxy set header Connection "";
proxy http version 1.1;
proxy_hide_header x-aspnet-version;
proxy hide header x-powered-by;
proxy_hide_header x-aspnetmvc-version;
client_max_body_size 512m;
client body buffer size 8m;
proxy_connect_timeout 120;
proxy send timeout 1800;
proxy_read_timeout 1800;
proxy buffer size 1024k;
proxy buffers 32 1024k;
proxy_temp_file_write_size 1024k;
proxy_intercept_errors on;
#Создать символьную ссылку:
sudo In -s /etc/nginx/sites-available/alphabi.conf
/etc/nginx/sites-enabled/alphabi.conf
systemctl restart nginx
#Конфигурационный файл /etc/haproxy/haproxy.cfg привести к следующему
виду:
global
```

log

/dev/log

local0

```
log
          /dev/log
                     local1 notice
    chroot /var/lib/haproxy
    stats socket /run/haproxy/admin.sock mode 660
                                                     level admin
    stats timeout 30s
    user
          haproxy
    group haproxy
    maxconn 20000
    daemon
    #Default SSL material locations
    ca-base
                /etc/ssl/certs
    crt-base
                /etc/ssl/private
    #Default ciphers to use on SSL-enabled listening sockets.
    #For more information, see ciphers(1SSL). This list is from:
    # See: https://ssl-config.mozilla.org/#server=haproxy&server-
version=2.0.3&config=intermediate
    ssl-default-bind-ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-
AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-
AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-
GCM-SHA384
    ssl-default-bind-ciphersuites
TLS AES 128 GCM SHA256:TLS AES 256 GCM SHA384:TLS CHACHA20 P
OLY1305 SHA256
    ssl-default-bind-options ssl-min-ver TLSv1.2 no-tls-tickets
defaults
    log
          global
    mode http
    timeout connect 60s
    timeout client 30m
    timeout server 30m
    timeout http-request
                        5m
```

```
timeout queue 5m
     timeout http-keep-alive 10s
     timeout check 30s
     errorfile
                 400
                       /etc/haproxy/errors/400.http
     errorfile
                 403
                        /etc/haproxy/errors/403.http
     errorfile
                 408
                       /etc/haproxy/errors/408.http
     errorfile
                 500
                       /etc/haproxy/errors/500.http
     errorfile
                 502
                       /etc/haproxy/errors/502.http
     errorfile
                 503
                       /etc/haproxy/errors/503.http
     errorfile
                 504
                       /etc/haproxy/errors/504.http
     compression algo gzip
     compression type text/html text/plain text/xml text/css application/javascript
application/json
     option forwardfor
     option http-pretend-keepalive
frontend
             FE-AlphaBI-http
     bind
           127.0.0.1:${HaproxyPort}
     mode
             http
     option httplog
     option dontlognull
     option log-separate-errors
     option forwardfor header X-Real-IP
     backlog 4096
     maxconn 20000
     default backend BE-BI-ALPHA
frontend
             FE-Mondrian-http
           ${BalancerHost}:${MondrianPort}
     bind
     mode
             http
```

option httplog

option dontlognull

option log-separate-errors

option forwardfor header X-Real-IP backlog 4096 maxconn 20000

default\_backend BE-MONDRIAN

#### backend BE-BI-ALPHA

mode http

balance leastconn

cookie NodeID insert indirect nocache

log global

option log-health-checks

fullconn 20000

http-check disable-on-404

option httpchk HEAD /cc/

server alpha-bi-01 \${WebAppHost\_1}:\${WebAppPort} check port \$
{WebAppPort} inter 5s weight 32 maxconn 1000 cookie alphabi-01
server alpha-bi-N \${WebAppHost\_N}:\${WebAppPort} check port \$
{WebAppPort} inter 5s weight 32 maxconn 1000 cookie alphabi-N

#### backend BE-MONDRIAN

mode http

balance leastconn

cookie NodeID insert indirect nocache

log global

option log-health-checks

fullconn 20000

http-check disable-on-404

option httpchk HEAD /\${MondrianAppName}

server olap-01 \${ModrianHost}:\${MondrianPort} check port \$ {MondrianPort} inter 5s weight 32 maxconn 1000 cookie olap-01 сервера, на котором развернута AlphaBI Вместо строки server alpha-bi-N \$ {WebAppHost\_N}:\${WebAppPort} check port \${WebAppPort} inter 5s weight 32 maxconn 1000 cookie alphabi-N добавить нужное количество строки по количеству серверов с развернутым приложеним AlphaBI, вместо N указать порядковый номер.

sudo haproxy -f /etc/haproxy/haproxy.cfg -c sudo systemctl restart haproxy

Скопировать дистрибутив AlphaBI на сервер. Bars.Alpha.Web-linux-x86\_64-\$ {version}.zip.

sudo useradd -m --system alphabi

sudo -s

mkdir -p /opt/alphabi /var/log/alphabi
unzip /tmp/Bars.Alpha.Web-linux-x86\_64-\${version}.zip -d /opt/alphabi
chown -R alphabi /opt/alphabi /var/log/alphabi
mkdir -p /var/tmp/alphabi
chown -R alphabi /var/tmp/alphabi
mkdir -p /mnt/nfs/alphabi\_file\_storage
echo '\${FsHost}:/var/lib/alphabi\_file\_storage /mnt/nfs/alphabi\_file\_storage/ nfs
rw,sync,intr 0 0' >> /etc/fstab
mount -a

#Заменить \${FsHost} на адрес NFS-сервера

sudo -s
mkdir -p /var/lib/alphabi\_file\_storage/
chown alphabi:alphabi /var/lib/alphabi\_file\_storage

```
#Создать файл /etc/systemd/system/alphabi.service следующего содержания:
[Unit]
Description=AlphaBI: Web application
After=syslog.target network.target
[Service]
User=alphabi
Environment=ASPNETCORE ENVIRONMENT=Production
Environment=ASPNETCORE URLS=http://*:${WebAppPort}/
Environment=ASPNETCORE URL BASE=${ExternalURLPathPrefix}
Environment=ASPNETCORE_USE_XFORWARDEDFOR=true
WorkingDirectory=/opt/alphabi
ExecStart=/opt/alphabi/bin/Bars.Alpha.Web
RestartSec=10
Restart=always
[Install]
WantedBy=multi-user.target
#Создать /opt/alphabi/alpha.config следующего содержания: (alpha.config
строится на основе alpha.release.config; alpha.release.config содержит
комментарии):
{
  "ControlCenterConfig": {
    "Password": "${AlphaControlCenterPassword}"
  },
  "DatabaseConfig": {
    "ServerAddress": "${PostgresHost}",
    "ServerPort": ${PostgresPort},
    "User": "${PostgresUser}",
    "Password": "${PostgresPassword}",
    "AdditionalParams": "",
    "DatabaseName": "${PostgresDatabase}",
    "UserCommandTimeoutSeconds": 30
  },
  "Cluster": {
```

```
"IsClustered": true,
     "Etcd": {
       "Host": "${EtcdHost 1}",
       "Port": ${EtcdPort},
       "UserName": "${EtcdUser}",
       "Password": "${EtcdPassword}",
       "KeyPrefix": "${EtcdPrefix}"
     }
  },
  "OlapConfig": {
     "XmlaEndpoint": "http://${BalancerHost}:${MondrianPort}/$
{MondrianAppName}/xmla",
     "ApplicationBaseUrl": "http://${BalancerHost}:${WebAppPort}$
{ExternalURLPathPrefix}",
     "ApiKey": "${MondrianApiKey}"
  },
  "FileStorageConfig": {
     "RootPath": "/mnt/nfs/alphabi file storage"
  },
  "LogConfig": {
     "FileLogging": "info",
     "DbLogging": "info",
     // Путь до директории с логами. По умолчанию директория .logs в рабочей
директории приложения
     "LogDirectory": "/var/log/alphabi"
  },
  "TempDir": {
     "Path": "/var/tmp/alphabi",
     "Clear": true
  },
  "ApplicationInfo": {
     "PublicUrl": "${ExternalURL}"
  },
  "ReportGenerator": {
```

```
"JavaExecutable": "${JavaExecutable}"
},
}
```

chown alphabi /opt/alphabi/alpha.config su - alphabi -s /bin/bash cd /opt/alphabi ./bin/Bars.Alpha.Web install \${Password}

systemctl start alphabi systemctl enable alphabi

- 3 Удаление ПО:
- 3.1 выполнить системные команды, действия: sudo apt autoremove --purge ntp postgresql-15 openjdk-17-jre tomcat9 unzip zip nfs-kernel-server nginx haproxy nfs-common libgssapi-krb5-2 libicu72 libssl3 zlib1g libgdiplus mc ssl-cert

sudo rm -rf /opt/'файлы ПО'

#### Приложение 3 к Протоколу № 21260/2024

#### Перечень используемых сокращений

«Руководство по КСЗ Ч. 1» – документ «Операционная система специального назначения «Astra Linux Special Edition». Руководство по КСЗ. Часть 1» РУСБ.10015-01 97 01-1;

Astra Linux SE 1.8.0 – операционная система специального назначения «Astra Linux Special Edition» РУСБ.10015-01 (очередное обновление 1.8);

ДВиС – дирекция внедрения и сопровождения;

ЗПС – замкнутая программная среда;

КСЗ – комплекс средств защиты;

МКЦ – мандатный контроль целостности;

МРД – мандатное управление доступом;

ОС – операционная система;

ПО – программное обеспечение «AlphaBI» версии 5.3.0.

- Идентификатор документа 96a4620f-aa2b-4836-b374-a720a0603f73



### Документ подписан и передан через оператора ЭДО АО «ПФ «СКБ Контур»

Организация, сотрудник

Доверенность: рег. номер, период действия и статус

Сертификат: серийный номер, Дата и время подписания период действия

91BFF299

09:42 GMT+03:00

043C5A7100B6B007A24D9A5E4F 27.05.2024 16:38 GMT+03:00 Подпись соответствует файлу с 10.11.2023 09:42 по 10.11.2024 документа

отправителя:

Подписи

ООО "РУСБИТЕХ-АСТРА" Проканюк Дмитрий Сергеевич Не приложена при подписании